[Search for users] [Overall Top Noters] [List of all Conferences] [Download this site]

Conference rusure::math

Title:Mathematics at DEC
Moderator:RUSURE::EDP
Created:Mon Feb 03 1986
Last Modified:Fri Jun 06 1997
Last Successful Update:Fri Jun 06 1997
Number of topics:2083
Total number of notes:14613

1929.0. "Crux Mathematicorum 1998" by RUSURE::EDP (Always mount a scratch monkey.) Thu Jan 05 1995 14:21

    Proposed by John Clyde, student, New Plymouth High School, New
    Plymouth, Idaho.
    
    Let a = sin 10 degrees, b = sin 50 degrees, c = sin 70 degrees.  Prove
    that
    
    	(i) a + b = c,	(ii) 1/a + 1/b = 1/c + 6	(iii) 8abc=1.
T.RTitleUserPersonal
Name
DateLines
1929.1CSC32::D_DERAMODan D'Eramo, Customer Support CenterThu Jan 05 1995 21:0244
	Spoiler:
        
        Start with the identity that
        
        	sin 3y = 3 sin y - 4 (sin y)^3
        
        If r1 = sin 10 degrees, r2 = sin 50 degrees, r3 = sin -70 degrees,
        then
        
        	sin 30 degrees   = 3 r1 - 4 r1^3
        	sin 150 degrees  = 3 r2 - 4 r2^3
        	sin -210 degrees = 3 r3 - 4 r3^2.
        
        sin 30 degrees = 1/2, and sin 150 = sin (180 - 150) = sin 30,
        and sin -210 = sin (-210 + 360) = sin 150 = sin 30, so we see
        that { r1, r2, r3 } all satisfy the cubic equation 1/2 = 3x - 4x^3,
        i.e., x^3 - (3/4)x + (1/8) = 0.  But the coefficients of the
        polynomial with zeroes at r1, r2, r3 are (x - r1)(x - r2)(x - r3)
        = x^3 - (r1 + r2 + r3)x^2 + (r1 r2 + r1 r3 + r2 r3)x - r1 r2 r3.
        Identify that with x^3 - (3/4)x + (1/2) to get
        
        	r1 + r1 + r3 = 0
        	r1 r2 + r1 r3 + r2 r3 = -3/4
        	r1 r2 r3 = -1/8
        
        Given that r1 = a = sin 10, r2 = b = sin 50, and
        r3 = sin -70 = - sin 70 = -c, the first gives
        
        	a + b - c = 0, or (i) a + b = c
        
        the third gives
        
        	ab(-c) = -1/8 or (iii) 8abc = 1
        
        and the second and third together give
        
        	ab - ac - bc                     -3/4
                ------------ = 1/c - 1/b - 1/a = ---- = -6,
                   abc                           1/8
        
        or (ii) 1/a + 1/b = 1/c + 6.
        
        Dan