Title: | Mathematics at DEC |
Moderator: | RUSURE::EDP |
Created: | Mon Feb 03 1986 |
Last Modified: | Fri Jun 06 1997 |
Last Successful Update: | Fri Jun 06 1997 |
Number of topics: | 2083 |
Total number of notes: | 14613 |
Proposed by Christopher J. Bradley, Clifton College, Bristol, U.K. Find an integer-sided right-angled triangle with sides x^2-1, y^2-1, z^2-1 where x, y, z are integers.
T.R | Title | User | Personal Name | Date | Lines |
---|---|---|---|---|---|
1794.1 | CFSCTC::GILBERT | Mon Sep 20 1993 22:02 | 11 | ||
> Find an integer-sided right-angled triangle with sides x^2-1, y^2-1, > z^2-1 where x, y, z are integers. For example: (x,y,z) = (10,13,14), (x^2-1,y^2-1,z^2-1) = (99,168,195), and 99^2 + 168^2 = 38025 = 195^2 Or: (x,y,z) = (265,287,329), (x^2-1,y^2-1,z^2-1) = (70224,82368,108240), and 70224^2 + 82368^2 = 11715897600 = 108240^2 |