[Search for users] [Overall Top Noters] [List of all Conferences] [Download this site]

Conference rusure::math

Title:Mathematics at DEC
Moderator:RUSURE::EDP
Created:Mon Feb 03 1986
Last Modified:Fri Jun 06 1997
Last Successful Update:Fri Jun 06 1997
Number of topics:2083
Total number of notes:14613

1587.0. "Equivalent Boolean Matrices" by TRACE::GILBERT (Ownership Obligates) Fri Mar 27 1992 18:18

    Two MxN boolean matrices� are equivalent iff one can be transformed
    into the other by permuting the rows and/or permuting the columns.
    
    How many distinct MxN boolean matrices are there?  Answers for small
    values of M or N are welcome.
    
    					- Gilbert
    
    P.S.  I've run into this problem a few times and have never made
    much headway on it.
    
    
    �Boolean matrices have elements from {0,1}.
T.RTitleUserPersonal
Name
DateLines
1587.1a possible reference to look at3D::ROTHGeometry is the real life!Fri Mar 27 1992 18:5120
   I wrote a simple program to enumerate such classes while playing
   with the light bulb game a while ago.  What I did was for each
   conjugacy class of permutation for each row and column, generate
   a permutation of the M*N elements of the matrix, and then chase
   thru to find the cycles and use the Burnside-Frobenius lemma on
   orbits of a group acting on a set.  Pretty childish I know, but
   it gave answers fairly quickly...

   See also M. Harrison, _On the Number of Classes of Binary Matrices_,
   IEEE Trans on Computers C-22 No 12, December 1973 pp 1048-1052,
   where in addition column complementations are allowed.

   What I'd really like to see, is how to handle transpositions
   of square matrices as well, and also to handle complementations
   of both rows and columns.  That seems much harder.

   I think there are some results on counting bipartate graphs
   that would also apply.  Anyone know if that's true?

   - Jim
1587.2d�j� not�DESIR::BUCHANANWed Apr 01 1992 07:503
    see also 1010.*
    
    Andrew.
1587.3I *thought* that problem sounded vaguely familiarGAUSS::ROTHGeometry is the real life!Wed Apr 01 1992 23:336
    Thanks for the pointer...

    fwiw, I spot checked a few of the counts in 1010 and they agree
    with my counting program.

    - Jim