Title: | Mathematics at DEC |
Moderator: | RUSURE::EDP |
Created: | Mon Feb 03 1986 |
Last Modified: | Fri Jun 06 1997 |
Last Successful Update: | Fri Jun 06 1997 |
Number of topics: | 2083 |
Total number of notes: | 14613 |
Can anyone point me to the identities etc. that are used to come up with the solution to the following Integral? (Sum = Integral sign) ax ax e Sum e Sin bx dx = -------- ( a Sin bx - b Cos bx ) 2 2 a + b I have tried to work out the solution and keep ending up down a rat hole. I have tried converting the integral to all exponentials and that didn't work for me either. I am doing a Fourier series solution where a = -j*pi*(2n-1) and b = -j*pi*(2n+1). Just for fun I am trying to put all this in the integral and work the solution through long hand, rather than look-up table. Any ideas? Dennis
T.R | Title | User | Personal Name | Date | Lines |
---|---|---|---|---|---|
1495.1 | by parts | STAR::ABBASI | Fri Sep 20 1991 12:37 | 42 | |
by parts: I= sum e^ax sin bx I= e^ax cos bx - SUM (cos bx)a e^ax ----------- --------------- b b I= e^ax cos bx - a/b ( -e^ax sin bx + SUM ( sin bx a e^ax) ) ----------- ------------ ----------------- b b b I= e^ax cos bx - a/b ( -e^ax sin bx + a/b I ) ----------- ------------ b b I = e^ax cos bx - a e^ax sin bx - a^2 I ------------ ------------- --- b b^2 b^2 I + a^2 I = e^ax ( b cos bx - a sin bx) ---- --------------------------- b^2 b^2 I ( b^2 +a^2 ) = " ----------- b^2 I= e^ax ( b cos bs - a sin bx) QED --------------------- b^2 + a ^2 also if you expand sin in exponentials (e^bi - e^-bi )/2i it will work. /nasser | |||||
1495.2 | ZFC::deramo | the radio reminds me | Fri Sep 20 1991 20:31 | 9 | |
Or just take e^ax sin bx to be the coefficient of i in the imaginary part of e^ax e^ibx = e^(a+ib)x. The indefinite integral becomes e^(a+ib)x / (a+ib) which equals (a-ib)e^(a+ib)x / (a^2 + b^2), and the coefficient of i in that is ( e^ax / (a^2 + b^2) )( a sin bx - b cos bx ). This is essentially the second suggestion in .1. Dan |