Title: | Mathematics at DEC |
Moderator: | RUSURE::EDP |
Created: | Mon Feb 03 1986 |
Last Modified: | Fri Jun 06 1997 |
Last Successful Update: | Fri Jun 06 1997 |
Number of topics: | 2083 |
Total number of notes: | 14613 |
Here's a good old Calculus question: f(x) = ln square root(7-2X**2) <- 2x squared find f'(x). ---------------------- now if f(x) = ln x then f'(x) = 1/x How do you get rid of the square root?? Peter
T.R | Title | User | Personal Name | Date | Lines |
---|---|---|---|---|---|
577.1 | answer | GALLO::EKLUND | Dave Eklund | Fri Sep 12 1986 17:56 | 7 |
Use the identity: ln (sqrt (g(x)) ) == 1/2 * ln (g(x)) This eliminates the square root. Chaining then makes the problem trivial. | |||||
577.2 | CLT::GILBERT | eager like a child | Sat Sep 13 1986 00:50 | 18 | |
Or, to be unsuave about this, we can apply the chain rule directly: f(x) = ln (sqrt(7-2x^2)) d f'(x) = -- (sqrt(7-2x^2)) / sqrt(7-2x^2) dx 1 -1/2 d = - (7-2x^2) -- (7-2x^2) / sqrt(7-2x^2) 2 dx 1 -1/2 = - (7-2x^2) (-4x) / sqrt(7-2x^2) 2 = -2x / (7-2x^2) |