| Title: | Mathematics at DEC |
| Moderator: | RUSURE::EDP |
| Created: | Mon Feb 03 1986 |
| Last Modified: | Fri Jun 06 1997 |
| Last Successful Update: | Fri Jun 06 1997 |
| Number of topics: | 2083 |
| Total number of notes: | 14613 |
P is a prime number, bigger than 3. Prove that P**2-1 divided by 24.
--
| T.R | Title | User | Personal Name | Date | Lines |
|---|---|---|---|---|---|
| 329.1 | METOO::YARBROUGH | Tue Aug 27 1985 08:36 | 8 | ||
Since all primes > 3 are of the form 6n{+-}1, p^2 is 36n^2{+-}12n+1, so
p^2-1 = 12n*(3n{+-}1). Since one of <n,3n{+-}1> is even, this is divisible
by 24.
Is there a plus-or-minus character in the alternate set? Any one know how
to evoke it?
Lynn Yarbrough
| |||||
| 329.2 | TOROID::MCKINLEY | Tue Aug 27 1985 09:04 | 8 | ||
��������������������������������������������������������������������������������
The {+-} character is decimal 177 in the DEC multinational character set.
Hit the symbol key, then + then - on the LK201 keyboard.
---Phil
��������������������������������������������������������������������������������
| |||||