Title: | Mathematics at DEC |
Moderator: | RUSURE::EDP |
Created: | Mon Feb 03 1986 |
Last Modified: | Fri Jun 06 1997 |
Last Successful Update: | Fri Jun 06 1997 |
Number of topics: | 2083 |
Total number of notes: | 14613 |
P is a prime number, bigger than 3. Prove that P**2-1 divided by 24. --
T.R | Title | User | Personal Name | Date | Lines |
---|---|---|---|---|---|
329.1 | METOO::YARBROUGH | Tue Aug 27 1985 09:36 | 8 | ||
Since all primes > 3 are of the form 6n{+-}1, p^2 is 36n^2{+-}12n+1, so p^2-1 = 12n*(3n{+-}1). Since one of <n,3n{+-}1> is even, this is divisible by 24. Is there a plus-or-minus character in the alternate set? Any one know how to evoke it? Lynn Yarbrough | |||||
329.2 | TOROID::MCKINLEY | Tue Aug 27 1985 10:04 | 8 | ||
�������������������������������������������������������������������������������� The {+-} character is decimal 177 in the DEC multinational character set. Hit the symbol key, then + then - on the LK201 keyboard. ---Phil �������������������������������������������������������������������������������� |