Title: | Mathematics at DEC |
Moderator: | RUSURE::EDP |
Created: | Mon Feb 03 1986 |
Last Modified: | Fri Jun 06 1997 |
Last Successful Update: | Fri Jun 06 1997 |
Number of topics: | 2083 |
Total number of notes: | 14613 |
Theorem: Any integer-producing polynomial P(x) of degree <= d can be expressed in the form: d -- x P(x) = \ a ( ), for some integers a . / j j j -- j=0 Proof. Trivially true for d=0. Assume true for d-1. Now, P'(x) = P(x+1) - P(x) is an integer-producing polynomial of degree <= d-1. So P'(x) satifies the theorem. But, x-1 x-1 d-1 -- -- -- i P(x) = P(0) + \ P'(i) = P(0) + \ \ a ( ) / / / j j -- -- -- i=0 i=0 j=0 d-1 x-1 d-1 -- -- i -- x = P(0) + \ \ a ( ) = P(0) + \ a ( ) / / j j / j j+1 -- -- -- j=0 i=0 j=0 d -- x = \ a ( ) , with a = P(0). / i-1 i -1 -- i=0 Which completes the induction.
T.R | Title | User | Personal Name | Date | Lines |
---|---|---|---|---|---|
281.1 | R2ME2::STAN | Thu May 23 1985 16:40 | 4 | ||
For this, and other neat results, see Polya und Szego, Problems and Theorems in Analysis, volume II, part 8, chapter 2 - Polynomials with Integral Coefficients and Integral-Valued Functions. |